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Abstract
We obtain exact results for the acceptance ratio and mean squared displacement
in Monte Carlo simulations of the simple harmonic oscillator in D dimensions.
When the trial displacement is made uniformly in the radius, we demonstrate
that the results are independent of the dimensionality of the space. We also
study the dynamics of the process via a spectral analysis and obtain an accurate
description for the relaxation time.

PACS numbers: 05.70.Ln, 81.05.Rm, 75.10.Nr, 64.60.My, 68.43.Mn, 75.40.Gb

1. Introduction

Since the original Metropolis algorithm appeared five decades ago, countless studies
have employed the technique to evaluate the thermodynamic properties of model systems
(Allen and Tildesley 1987, Binder 1997, Frenkel and Smit 2002). The essence of the method
is to generate a sequence of configurations that represent a given thermodynamic ensemble,
often the canonical ensemble. Properties of interest are then obtained as averages over the
configurations. At each step of the simulation a trial configuration is obtained from the current
one by making a random displacement in the configuration space. This might correspond to,
for example, displacing a randomly selected particle. The trial configuration is either accepted
or rejected with a probability given by the appropriate Boltzmann factor for the ensemble. In
case of rejection, the current configuration is retained for use in evaluating the properties of
interest.

Since many applications of MC are computationally intensive, a much addressed issue
has been the optimization of the simulation with respect to one or more control parameters
so that the configuration space is sampled in the most efficient way. Bouzida, Kumar and
Swendsen (BKS) (Bouzida et al 1992, Swendsen 2002), as part of a programme aimed at
improving the efficiency of MC simulations of biomolecules, performed numerical studies of
the simple harmonic oscillator (SHO) where the convergence of the simulation depends on
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the maximum displacement. There is no unique measure of efficiency, but two simple choices
are the mean squared and mean absolute displacements. As the maximum displacement tends
to zero or infinity it is clear that the average value of both of these quantities tends to zero
since, in the first case the particle does not move, while in the second all attempted moves are
rejected. Thus both quantities have a maximum for some intermediate value of the maximum
displacement.

It is also useful to consider the dynamical process associated with an MC simulation, even
though it does not correspond to the actual dynamics of the system. One can, for example,
calculate various time correlation functions that can be used to develop alternative efficiency
criteria (Kolafa 1988, Mountain and Thirumalai 1994).

BKS (Bouzida et al 1992) performed numerical studies of the SHO in one, two and
three dimensions and examined the acceptance ratio Pacc (i.e., the fraction of accepted trial
configurations), mean squared, 〈(�x)2)〉, and mean absolute, 〈|�x|〉, displacements as a
function of the maximum displacement, δ. They found that the acceptance ratio decreases
approximately exponentially for small to intermediate values of δ and then inversely for
larger values. In one dimension they found that the maxima in 〈(�x)2〉 and 〈|�x|〉 occur at
Pacc = 0.42 and Pacc = 0.56, respectively3. In higher dimensions the results depend on how
the jump is made. BKS considered two cases: in one the jumps are performed uniformly
to any point in a spherical volume of radius δ centred on the current position, a choice that
favours larger radial displacements for dimensions D > 1. In a second method, the jumps
were sampled uniformly in the radius (and randomly in the orientation) so that all radial
displacements are equally probable. In the former case BKS observed that, for a given δ,
Pacc decreases as a function of D, while for uniform radius sampling the numerical results
suggested that Pacc is independent of D.

In addition to these static properties, BKS also examined the correlation time, τ , of
the energy–energy correlation function. They observed a minimum correlation time for an
acceptance ratio of approximately 50%.

Here we present an analytical study of the SHO in arbitrary dimension. We obtain exact
expressions for the acceptance ratio and the mean squared and mean absolute displacements
as functions of the maximum displacement δ. We show that when the trial jump is selected
uniformly in the radius, the results are independent of the dimension. We also present an
analysis of the dynamics of the process.

2. One dimension

We first investigate the case of a SHO in one dimension, whose potential energy is given by
V (x) = kx2/2 where x is the position and k is the stiffness constant.

In a standard Metropolis Monte Carlo simulation one makes a trial move with a uniform
random displacement selected between −δ and δ. The dynamical process generated by the
successive trial moves of the Monte Carlo simulation can be written as

dP(x, t)

dt
= − 1

2δ

∫ δ

−δ

dhW(x → x + h)P (x, t) +
1

2δ

∫ δ

−δ

dhW(x + h → x)P (x + h, t) (1)

3 Figures 1 and 2 of (Bouzida et al 1992) indicate that the authors were in possession of an analytical expression for
the probability versus displacement, as well as other static quantities, in the one-dimensional system. However, no
formulae are given and there is no discussion of how the results were obtained.
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where W(x → x + h) denotes the transition rate from the state x to the state x + h and P(x, t)

is the probability of finding the oscillator at position x at time t. To ensure the convergence
towards equilibrium, a sufficient condition is given by detailed balance, which is expressed as

W(x → x + h)

W(x + h → x)
= Peq(x + h)

Peq(x)
(2)

where

Peq(x) = c exp(−βV (x)) (3)

and c = √
βk/2π is a normalization constant ensuring that

∫ ∞
−∞ dxPeq(x) = 1. One solution

of equation (2) is the Metropolis rule,

W(x → x + h) = min(1, exp(−β(V (x + h) − V (x))). (4)

Most of the properties of the 1D SHO can be obtained analytically. For instance, the
acceptance ratio, which is the number of accepted trials over the total number of trials can be
expressed as

Pacc(δ) = c

∫ +∞

−∞
dx e−βV (x) 1

2δ

∫ δ

−δ

dhW(x → x + h). (5)

In this equation exp(−βV (x)) dx is the probability that the oscillator is between x and
x + dx, dh/2δ is the probability of selecting a random displacement between h and h + dh and
W(x → x + h) is the probability of accepting the trial displacement (given by equation (4)).
Integration over the allowed values of x and h then gives the average acceptance probability.
Since displacements to the left and right are symmetric, we need to consider only one direction.
For displacements to the right, equation (5) can be written as

d(δPacc(δ))

dδ
= c

∫ +∞

−∞
dx e−βV (x)W(x → x + δ). (6)

For x < −δ/2,W(x → x + δ) = 1 and for x > −δ/2, W(x → x + δ) = e−βk((x+δ)2−x2)/2.
One thus obtains

d(ξPacc(ξ))

dξ
= 1 − erf

(
ξ

2

)
(7)

where erf(x) is the error function and ξ =
√

βk

2 δ. Using the initial condition, i.e., Pacc(0) = 1,
the solution of the differential equation (7) is

Pacc(ξ) = 1 − erf

(
ξ

2

)
+

2√
πξ

(1 − e−ξ 2/4). (8)

The function is plotted in figure 1.
The mean squared displacement, 〈(�x)2〉, and the mean absolute displacement, 〈|�x|〉,

defined as

〈(�x)2〉 = c

∫ +∞

−∞
dx exp(−βV (x))

1

2δ

∫ δ

−δ

dh h2W(x → x + h) (9)

〈|�x|〉 = c

∫ +∞

−∞
dx exp(−βV (x))

1

2δ

∫ δ

−δ

dh|h|W(x → x + h) (10)

can be quite simply obtained from the generating function

Z(λ) = c

∫ +∞

−∞
dx exp(−βV (x))

1

2δ

∫ δ

−δ

dh exp(−λ|h|)W(x → x + h) (11)
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Figure 1. Acceptance ratio Pacc versus ξ =
√

βk
2 δ for a harmonic oscillator with uniform volume

sampling in D = 1, 2 and 3 dimensions (full, dashed and dotted lines respectively). For a uniform
radius sampling, all curves coincide with the one-dimensional result (full line).

by the derivatives with respect to λ and set λ = 0, i.e., 〈|�x|〉 = −(∂Z(λ)/∂λ)λ=0, 〈(�x)2〉 =
(∂2Z(λ)/∂λ2)λ=0 (and, of course, Pacc = Z(λ = 0)).

By multiplying both sides of equation (11) by ξ and next differentiating with respect to
ξ , one obtains

∂(ξZ(λ, ξ))

∂ξ
= exp

(
−

√
2

βk
λξ

)(
1 − erf

(
ξ

2

))
(12)

which, after defining λ̃ =
√

2
βk

λ, leads to

Z(λ, ξ) = 1

λ̃ξ

[
1 − exp(−λ̃ξ )

(
1 − erf

(
ξ

2

))
− exp(λ̃2)

(
erf

(
ξ

2
+ λ̃

)
− erf(λ̃)

)]
. (13)

By taking the derivatives of the above formula with respect to λ and evaluating the
resulting expressions at λ = 0, it is easy to show that the mean squared and mean absolute
displacements are given by

√
βk

2
〈|�x|〉 =

[
ξ

2

(
1 − erf

(
ξ

2

))
− 1√

π
exp

(
−ξ 2

4

)
+

erf
(

ξ

2

)
ξ

]
(14)

βk

2
〈(�x)2〉 = 1

3

[
ξ 2

(
1 − erf

(
ξ

2

))
+

8√
πξ

(
1 −

(
1 +

ξ 2

4

)
exp

(
−ξ 2

4

))]
. (15)

The maximum in the mean squared and mean absolute displacements occur for ξ =
2.616 48 and ξ = 1.763 32, which corresponds to acceptance ratio values of Pacc = 0.417 67
and Pacc = 0.558 239 in agreement with the numerical results of BKS (Bouzida et al 1992)
(see figures 2 and 3).
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Figure 2. Mean squared displacement 〈(�r)2〉 βk
2 versus the acceptance ratio Pacc for uniform

volume sampling in one, two and three dimensions (full curve, dashed and dotted lines,
respectively). For a uniform radius sampling all curves coincide with the one-dimensional result
(full line).
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Figure 3. Mean absolute displacement 〈|�r|〉
√

βk
2 versus the acceptance ratio Pacc for a

uniform volume sampling in one, two and three dimensions (full curve, dashed and dotted lines,
respectively). For a uniform radius sampling all curves coincide with the one-dimensional result
(full line).

3. D dimensions

We show here that the acceptance ratio, mean squared displacement and other quantities of
interest can be obtained exactly in any dimension. Note that the term ‘volume’ should be
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interpreted as the hypervolume in D dimensions, e.g., area in 2D and volume in 3D. For
simplicity, we derive exact expressions in odd dimensions, but similar results can be obtained
in even dimensions.

3.1. Uniform volume sampling

In D dimensions, the acceptance ratio is expressed as

Pacc(δ) = cD

δDVD

∫
dDr exp(−βkr2/2)

∫
|h|�δ

dDh min(1, exp(−βk(|r + h|2 − r2)/2)) (16)

where VD = πD/2/	(D/2 + 1) is the volume of the sphere of unit radius in D dimensions and

cD =
(

DVD

∫ ∞

0
drrD−1e−βkr2/2

)−1

=
(

βk

2π

)D/2

. (17)

In odd dimensions, the derivative of equation (16) with respect to δ can be written explicitly
by using generalized spherical coordinates

d(δDPacc(δ))

dδ
= cD

VD

∫
dDr exp(−βkr2/2)

× δD−1
∫

d
 min(1, exp(−βk(rδ cos φ1 + δ2/2))) (18)

where d
 = (∏D−2
j=1 (sin(φj ))

D−1−j dφj

)
dφD−1 such that

∫
d
 = DVD . The first D − 2

variables φj are integrated from 0 to π , whereas φD−1 is integrated from 0 to 2π . If we denote

u = cos(φ1), perform integration over φ2 . . . φD−1 and introduce the variable v = r

√
βk

2

equation (18) can be rewritten as

d(ξDPacc(ξ))

dξ
= DξD−1 2

	
(

D
2

) ∫ 1
−1 du(1 − u2)(D−3)/2

×
∫ +∞

0
vD−1dv e−v2

∫ 1

−1
du(1 − u2)(D−3)/2 min(1, exp(−(2ξvu + ξ 2))) (19)

where min(1, exp(−(2ξvu + ξ 2))) = exp((−(2ξvu + ξ 2)) for v < ξ/2 with −1 < u < 1
and for v > ξ/2 with −ξ/(2v) < u < 1 and min(1, exp(−(2ξvu + ξ 2))) = 1 for r > ξ/2

with −1 < u < −ξ/(2v). Using that
∫ 1
−1 du(1 − u2)(D−3)/2 = 	(D−1

2 )
	( D

2 )

√
π , equation (19) then

becomes

d(ξDPacc(ξ))

dξ
= 2DξD−1

√
π	

(
(D−1)

2

)(∫ ξ/2

0
dv vD−1 e−v2

∫ 1

−1
du(1−u2)(D−3)/2 exp(−(ξ 2 + 2ξvu))

+
∫ +∞

ξ/2
vD−1dv e−v2

[∫ −ξ/(2v)

−1
du(1 − u2)(D−3)/2

+
∫ 1

−ξ/(2v)

du(1 − u2)1/2 exp((−(ξ 2 + 2ξvu)))

])
. (20)

After some calculation (see appendix A) one obtains

d(ξDPacc(ξ))

dξ
= DξD−1

(
1 − erf

(
ξ

2

))
(21)
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which gives, for instance, in three dimensions

Pacc(ξ) = 1 − erf

(
ξ

2

)
+

8√
πξ 3

(
1 −

(
1 +

ξ 2

4

)
exp

(
−ξ 2

4

))
. (22)

Figure 1 shows the acceptance ratio Pacc versus δ in one, two and three dimensions.
A similar calculation for generating function ZD(λ, ξ) leads to

∂(ξDZD(λ̃, ξ))

∂ξ
= DξD−1e−λ̃ξ

(
1 − erf

(
ξ

2

))
(23)

and to

ZD(λ̃, ξ) = D(−ξ)1−D ∂D−1

∂λ̃D−1
ZD=1(λ̃, ξ) (24)

where the expression for ZD=1(λ̃, ξ) is given in equation (13). Since Pacc(ξ) = ZD(λ̃ = 0, ξ),
it follows from equation (24) that the acceptance ratio in D dimensions is equal, up a factor

D(−ξ)1−D

√
βk

2 , to the mean squared displacement 〈(�x)2〉 in one dimension: compare
equation (22) to equation (15).

Although straightforward, the algebra rapidly becomes tedious, and we only illustrate the
results by giving the expression of the mean squared displacement 〈(�r)2〉 in three dimensions

βk

2
〈(�r)2〉 = ∂2

∂λ̃2
ZD=3(λ̃, ξ)|λ̃=0

= 3

ξ 2

(
βk

2

)2

〈(�x)4〉D=1

= 12

5

[
ξ 2

4

(
1 − erf

(
ξ

2

))
+

16√
πξ 2

(
1 −

(
1 +

ξ 2

4
+

ξ 4

32

)
e(− ξ2

4 )

)]
. (25)

The mean squared and mean absolute displacements are plotted versus the acceptance ratio
Pacc in one, two and three dimensions in figures 2 and 3. Note that the maximum is shifted to
the left, i.e., to the smallest values of the acceptance ratio, when the space dimension increases.

3.2. Uniform radius sampling

The acceptance ratio Pacc,w in D dimensions can be expressed as

Pacc,w(δ) = cD

∫
D

dDr exp(−βkr2/2)

∫
|h|�δ

dDhPw(h) min(1, exp(−βk(|r + h|2 − r2)/2))

(26)

where Pw(h) is the weighted probability. For a uniform distribution in radius, hD−1Pw(h) =
(DVDδ)−1. Using the method developed in the above section, it is straightforward to obtain
that

d(ξPacc,w(δ))

dξ
=

(
1 − erf

(
ξ

2

))
(27)

which shows that the acceptance ratio is the same whatever the dimension and explains the
data collapse observed in (Bouzida et al 1992). Similarly, the generating function Z(λ, ξ) can
be shown to obey to the differential equation

∂Z(λ, ξ)

∂ξ
= exp

(
−

√
2

βk
λξ

)(
1 − erf

(
ξ

2

))
(28)

independently of the dimension D. This proves that Z(λ, ξ) and all moments such as 〈|�r|〉
and 〈(�r)2〉 are independent of dimension, as numerically found by BKS (Bouzida et al 1992).
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4. Dynamic behaviour

In addition to the exact results for the static properties presented above, we have investigated the
dynamic behaviour of the SHO by using numerical and analytical approaches. For simplicity,
we discuss only the unidimensional case, but the approach can be generalized to D dimensions.

The master equation describing the dynamical evolution of the system during the Monte
Carlo simulation, equation (1), can be formally written as

dP(t)

dt
= −LP(t) (29)

where L is a linear operator acting on P and the Metropolis rule, equation (4), is used for
the transition rate. We consider the spectrum of eigenvalues λ of L. Denoting by Pλ(x) the
eigenfunction associated with λ and introducing fλ(x) via Pλ(x) = Peq(x)fλ(x), where Peq(x)

is given in equation (3), one can express the eigenvalue equation

λPeq(x)fλ(x) = L(Peq(x)fλ(x)) (30)

as

λfλ(x) = 1

2δ

∫ δ

−δ

dh Min(1, e−β(V (x+h)−V (x)))(fλ(x) − fλ(x + h)). (31)

Multiplying both sides by exp(−βV (x))f ∗
λ (x), where the star denotes a complex

conjugate, and integrating over x then gives

λ = 1

4δ

∫ +∞
−∞ dx

∫ δ

−δ
dh Min(e−βV (x), e−βV (x+h))|fλ(x + h) − fλ(x)|2∫ +∞

−∞ dx e−βV (x)|fλ(x)|2 . (32)

As anticipated for a Markov process satisfying detailed balance, one deduces from
the above formula that all eigenvalues are real and positive; the smallest eigenvalue is
λ0 = 0 and it is associated with f0(x) = constant �= 0. One needs to consider only real
eigenfunctions. Moreover, the eigenvalues can be sorted according to the symmetry of the
associated eigenfunctions: it is easy to check that the eigenfunctions are either even or odd
functions of x, due to the fact that the potential V (x) is an even function of x.

Any solution of the master equation can be expanded as

P(x, t) = Peq(x)

(
1 +

∑
λ>0

cλfλ(x) e−λt

)
(33)

and a similar expansion applies to the conditional probability P(x, t |x0, 0) from which one
can compute any time-dependent correlation function. The long-time kinetics governing the
approach to equilibrium in P(x, t) and in any correlation function is characterized by the
smallest non-zero eigenvalue for which the amplitude, i.e., the projection of P(x, 0), or of
the dynamic observable, onto the relevant eigenfunction, does not vanish.

Since, according to equation (32), the eigenvalues are expressed as the ratio of two positive
quadratic functionals (that in the denominator being also definite), one can use the Rayleigh—
Ritz procedure to find a variational upper bound for the eigenvalues (Dettman 1962, Arfken
1985). Consider first the smallest non-zero eigenvalue λ1. For any real function φ(x) which
is both normalized and orthogonal to f0(x), i.e., satisfies∫ ∞

−∞
Peq(x)φ(x)2 dx = 1 (34)

∫ ∞

−∞
Peq(x)φ(x) dx = 0 (35)
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one has the inequality

λ1 � λ1[φ] = 1

4δ

∫ +∞

−∞
dx

∫ δ

−δ

dh Min(e−βV (x), e−βV (x+h))|φ(x + h) − φ(x)|2. (36)

A convenient choice of trial functions is provided by linear combinations of Hermite

polynomials Hn(ξ) (where, as in the previous sections ξ =
√

βk

2 δ), with n > 0, since these
form, up to a trivial multiplicative factor, an orthonormal basis with respect to the weight
function exp(−βV (x)) with V (x) = (1/2)kx2. For λ1, which is associated with an odd
eigenfunction, one needs to consider only the odd polynomials H2n+1(ξ), n � 0.

The simplest estimate of λ1 is provided by taking

φ(ξ) = H1(ξ)√
2
√

π
=

√
2√
π

ξ (37)

which gives

λ1[φ] = 4

3

[
ξ 2

4

(
1 − erf

(
ξ

2

))
+

2√
πξ

(
1 −

(
1 +

ξ 2

4

)
exp

(−ξ 2

4

))]
. (38)

With this choice of φ(ξ), λ1[φ] simply reduces to the mean squared displacement 〈(�x)2〉
multiplied by

(
βk

2

)
(see equation (15)). One then derives from section 2 that λ1[φ] versus ξ

passes though a maximum for ξ � 2.611 648, which corresponds to an acceptance ratio of
Pacc = 0.417 67.

A better estimate of λ1 can be obtained by using a linear combination of H1(ξ) and H3(ξ):

φ(ξ ; θ) =
[

cos(θ)√
2
√

π
H1(ξ) +

sin(θ)√
48

√
π

H3(ξ)

]
(39)

where only one independent parameter θ appears due to the normalization condition. The best
bound is determined by minimizing the expression λ1[φ] with respect to θ :

∂λ1[φ]

∂θ
= 0. (40)

The result is a lengthly algebraic formula that is plotted in figures 4 and 5, together with
the expression in equation (38).

An improved estimate of λ1 can be derived by noting that at large ξ, λ1 is inversely
proportional to ξ . Actually, one can show that this is true for all eigenvalues except λ0 = 0.
By considering equation (31) in the limit where x goes to zero, one arrives at the result (see
appendix B)

λ(ξ) ∼
√

π

2ξ
+ O(e−ξ 2

) (41)

valid for large ξ . Note that the correction terms are very small as soon as ξ � 3. One can
build an estimate of λ1(ξ) by using the piecewise function that is equal to

√
π

2ξ
for ξ � ξ ∗

and is equal to λ1[φ] obtained for a linear combination of H1 and H3 (see above) for ξ � ξ ∗,
where ξ ∗ is the value at which λ1[φ] =

√
π

2ξ
. λ(ξ) is then maximum for ξ = ξ ∗ � 2.35;

the corresponding value of the acceptance ratio is Pacc � 0.56. The estimate is shown in
figures 4 and 5.

In order to compare our results with the BKS paper (Bouzida et al 1992), it is necessary to
calculate the second eigenvalue λ2. The trial function is then chosen in a subspace orthogonal
not only to f0(ξ) = constant but also to the eigenfunction associated with λ1. A convenient
choice is provided by (normalized) linear combinations of the even Hermite polynomials
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Figure 4. λ1 versus ξ . The full curve was obtained by numerical diagonalization of the master
equation. The dashed curve corresponds to the zeroth-order estimate, equation (38), the dotted
curve corresponds to the solution of the first-order trial function, equation (40)), and the dash-dot
curve corresponds to the exact asymptotic behaviour, equation (41).
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Figure 5. Same as figure 4 except ξλ1 versus ξ .

H2n(ξ) with n � 1. An estimate of λ2 can be obtained by using a linear combination of H2(ξ)

and H4(ξ):

φ(ξ ; θ) =
[

cos(θ)

2
√

2
√

π
H2(ξ) +

sin(θ)

8
√

6
√

π
H4(ξ)

]
(42)
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Figure 6. λ2 versus ξ . The full curve was obtained by numerical diagonalization of the master
equation. The dashed curve corresponds to the zeroth-order estimate, (θ = 0 in equation (42)),
the dotted curve corresponds to the solution of the first-order trial function, equation (42) and the
dash-dot curve corresponds to the exact asymptotic behaviour, equation (41).
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Figure 7. Same as figure 6 except ξλ2 versus ξ .

and the result is shown in figures 6 and 7, together with the zeroth-order approximation obtained
with only H2(ξ) and the improved estimate taking into account the large-ξ behaviour.

In addition to the above analytical estimates, we have also performed a numerical study
of the spectrum of eigenvalues of the master equation (1). The latter has been discretized in
x-space by taking a constant step size �, which leads to a matrix form

dP(t)

dt
= −WP(t) (43)
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Figure 8. Inverse of the first non-zero eigenvalues, 1/λ1 (dashed curve), 1/λ2 (full curve), and
asymptotic behaviour (dotted curve) versus the acceptance probability Pacc

where P is a vector with components Pi(t) = P(xi, t) and the elements Wij of the matrix W
are such that

Wii = �

i+Nh∑
j=i−Nh,j �=i

W(i → j) Wij = −�W(j → i) (44)

and W(i → j) = Min(1, e−β(V (xj )−V (xi ))). The eigenvalues λ can then be obtained via an
exact numerical diagonalization of the matrix W . In practice, convergence is obtained for
a unidimensional lattice of 400 sites, where the x-range is [−10, 10], and ξ goes from 0
to 5. One checks that the lowest eigenvalue is equal to zero and corresponds to the equilibrium
state, and that all other eigenvalues are real and strictly positive and behave as

√
π/(2ξ)

for large enough ξ . The results for the first non-zero eigenvalue λ1 and λ2 are displayed in
figures 4 and 6, respectively. One can see that the best analytical estimate described above
(linear combination of two Hermite polynomials plus exact asymptotic behaviour at large ξ )
is in excellent agreement with the numerical value in both cases.

The above analysis allows us to derive by analytical means the simulation result obtained
by BKS (Bouzida et al 1992) for the dependence of the characteristic time τ of the energy–
energy correlation function on the acceptance ratio: approximating τ by 1/λ2 (since the
energy V (x) is an even function of x, its projection on the first eigenfunction associated with
λ1 vanishes), using for λ2 our best analytical estimate, and combining this with the exact result
for the acceptance ratio Pacc in section 2 lead to the full curve plotted in figure 8; the time
τ is minimum for the acceptance ratio close to 0.47, as found by BKS (Bouzida et al 1992)
(�0.50).

In figure 8, we have also plotted 1/λ1 versus the acceptance ratio: it is minimum for
Pacc = 0.45. Note that using the results of this and the preceding sections, one can rigorously
show that the correlation time τ , no matter how it is precisely defined, diverges as 1/Pacc when
Pacc → 0 and as 1/(1 − Pacc) when Pacc → 1.
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In summary, we have shown that the spectrum of the master equation is very accurately
described for small and intermediate displacements by a trial eigenfunction composed of
two Hermite polynomials. When combined with the exact asymptotic result obtained by the
analysis of the master equation, we obtain a complete description of the dynamics.

5. Conclusion

We have obtained exact results concerning Metropolis algorithms for the displacement of a
particle in the simple harmonic potential. Our analysis provides a theoretical explanation of the
numerical results obtained by BKS (Bouzida et al 1992). In particular, we show that the results
become independent of the space dimension when the successive trial moves are sampled
according to a Metropolis algorithm with a uniform distribution in radius (instead of volume).
This rationalizes the search for efficient Monte Carlo methods for the simulation of systems
with intrinsic inhomogeneity and anisotropy such as biological molecules (Bouzida et al 1992,
Swendsen 2002).

To our knowledge, the analytical expressions obtained here for both the static and dynamic
properties are among the very few exact results available on Monte Carlo methods. They can
be taken as a starting point for perturbative studies of more complex models, but generalization
to systems with many coupled degrees of freedom is still out of reach.
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Appendix A. Acceptance probability

The derivation of equation (21) can be done from equation (20) after some manipulations
whose details are given here. Let us denote ID and JD as

ID =
∫ ξ/2

0
dv vD−1 e−v2

∫ 1

−1
du (1 − u2)(D−3)/2 exp(−(ξ 2 + 2ξvu)) (A.1)

JD =
∫ +∞

ξ/2
dv vD−1 e−v2

[∫ −ξ/(2v)

−1
du (1 − u2)(D−3)/2

+
∫ 1

−ξ/(2v)

du (1 − u2)(D−3)/2 exp((−(ξ 2 + 2ξvu)))

]
. (A.2)

Changing the variable u to y = vu and v to t = v2 − y2 leads to the following relations:

ID =
∫ ξ/2

0
dy

exp(−(ξ + y)2) + exp(−(y − ξ)2)

2

∫ ξ 2/4−y2

0
dt t (D−3)/2 e−t (A.3)

JD =
∫ +∞

ξ/2
dy

exp(−y2)

2

∫ +∞

0
dt t (D−3)/2 e−t

+
∫ ξ/2

0
dy

exp(−(y − ξ)2)

2

∫ +∞

ξ 2/4−y2
dt t (D−3)/2 e−t
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+
∫ ξ/2

0
dy

exp(−(y + ξ)2)

2

∫ +∞

ξ 2/4−y2
dt t (D−3)/2 e−t

+
∫ +∞

ξ/2
dy

exp(−(y + ξ)2)

2

∫ +∞

0
dt t (D−3)/2 e−t . (A.4)

Using that
∫ +∞

0 dt t (D−3)/2 e−t = 	((D − 1)/2), one obtains that

ID + JD =
√

π

2
	

(
D − 1

2

) (
1 − erf

(
ξ

2

))
. (A.5)

Inserting equations (A.5) in equation (20) leads to equation (21).

Appendix B. Asymptotic behaviour of the eigenvalues for large δ

Consider equation (31) in the limit x → 0; one obtains after rearranging the various terms:

λfλ(x) = 1

2δ

∫ δ

−δ

dh exp

(−βk

2
((x + h)2 − x2)

)
(fλ(x) − fλ(x + h))

+
1

2δ

∫ 0

−2x

dh

(
1 − exp

(−βk

2
((x + h)2 − x2)

))
(fλ(x) − fλ(x + h)). (B.1)

The second term of the right-hand side of equation (B.1) is at most of order x3|fλ(x)| and is
always negligible so that one can rewrite equation (B.1) as(

λδ −
∫ δ

0
dh e

−βk

2 h2
+ O(x2)

)
fλ(x) � −e

−βk

2 x2

2

∫ δ

−δ

dh exp

(−βk

2
(x + h)2

)
fλ(x + h).

(B.2)

Shifting the variable from h to x + h in the integral of the rhs of equation (B.2) and
using the orthogonality of fλ(x) to f0(x) = constant for all non-zero eigenvalues λ, i.e.,∫ +∞
−∞ dx exp

(−βk

2 x2
)
fλ(x) = 0, leads to the following expression,(

λδ −
√

π

2βk
+ O(x2)

)
fλ(x) � 1 + O(x2)

2

[∫ +∞

x+δ

dh e
−βkh2

2 fλ(h) +
∫ x−δ

−∞
dh e

−βkh2

2 fλ(h)

]
(B.3)

for any non-zero λ. The rhs of equation (B.3) can be Taylor expanded, which gives(
λδ −

√
π

2βk
+ O(x2)

)
fλ(x) � 1

2

[∫ +∞

δ

dh e
−βkh2

2 (fλ(h) + fλ(−h))

− x e
−βkh2

2 (fλ(h) − fλ(−h)) + O(x2)

]
. (B.4)

If the eigenfunction fλ is an even function of x, one then derives that fλ(x) = fλ(0) + O(x2)

with fλ(0) �= 0 and(
λδ −

√
π

2βk

)
=

∫ +∞

δ

dh exp

(−βkh2

2

)
fλ(h)

fλ(0)
(B.5)

which after introducing ξ =
√

βk

2 δ can be rewritten as

λ =
√

π

2ξ
+

√
2

βk

∫ +∞

ξ

dh exp

(−βkh2

2

) fλ

(√
2
βk

h
)

fλ(0)
. (B.6)
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If the eigenfunction is an odd function of x, one has that fλ(x) = f ′
λ(0)x(1 + O(x2) with

f ′
λ(0) �= 0 and

λ =
√

π

2ξ

fλ

(√
2
βk

ξ
)

fλ(0)
exp(−ξ 2). (B.7)

From equations (B.6) and (B.7), one immediately obtains that all non-zero eigenvalues behave
as

λ ∼
√

π

2ξ
+ O(exp(−ξ 2)) (B.8)

when ξ → +∞, since fλ(x) diverges more slowly than ex2
when x → +∞.
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